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Fault Tolerance 



Fault Tolerance 

• A DS should be fault-tolerant 

– Should be able to continue functioning in the 

presence of faults 

 

• Fault tolerance is related to dependability 

 

 



Dependability 

Dependability Includes 

 

• Availability 

• Reliability 

• Safety 

• Maintainability 



Availability & Reliability (1) 

• Availability: A measurement of whether a system 

is ready to be used immediately 

– System is up and running at any given moment 

 

• Reliability: A measurement of whether a system 

can run continuously without failure 

– System continues to function for  a long period of time 



Availability & Reliability (2) 

• A system goes down 1ms/hr has an 

availability of more than 99.99%, but is 

unreliable 

 

• A system that never crashes but is shut 

down for a week once every year is 100% 

reliable but only 98% available 



Safety & Maintainability 

• Safety: A measurement of how safe failures are 

– System fails, nothing serious happens 

– For instance, high degree of safety is required for 

systems controlling nuclear power plants 

• Maintainability: A measurement of how easy 

it is to repair a system 

– A highly maintainable system may also show a high 

degree of availability 

– Failures can be detected and repaired automatically? 

Self-healing systems? 

 



Faults 

• A system fails when it cannot meet its promises 

(specifications) 

• An error is part of a system state that may lead to a 

failure  

• A fault is the cause of the error 

• Fault-Tolerance: the system can provide services 

even in the presence of faults 

• Faults can be: 

– Transient (appear once and disappear) 

– Intermittent (appear-disappear-reappear behavior) 

• A loose contact on a connector intermittent fault 

– Permanent (appear and persist until repaired) 



Failure Models 

Type of failure Description 

Crash failure A server halts, but is working correctly until it halts 

Omission failure 

     Receive omission 

     Send omission 

A server fails to respond to incoming requests 

A server fails to receive incoming messages 

A server fails to send messages 

Timing failure A server's response lies outside the specified time interval 

Response failure 

     Value failure 

     State transition failure 

The server's response is incorrect 

The value of the response is wrong 

The server deviates from the correct flow of control 

Arbitrary failure 

(Byzantine failure) 

A server may produce arbitrary responses at arbitrary times 



Failure Masking 

• Redundancy is key technique for hiding failures 

• Redundancy types: 

1. Information: add extra (control) information 

• Error-correction codes in messages 

2. Time: perform an action persistently until it 

succeeds: 

• Transactions 

3. Physical: add extra components (S/W & H/W) 

• Process replication, electronic circuits 

? 



Example – Redundancy in Circuits (1) 



Example – Redundancy in Circuits (2) 

Triple modular redundancy. 
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Process Resilience 

• Mask process failures by replication 

 

• Organize processes into groups, a message sent 

to a group is delivered to all members 

 

• If a member fails, another should fill in 

 



Flat Groups versus Hierarchical Groups 

a) Communication in a flat group. 

b) Communication in a simple hierarchical group 



Process Replication 

• Replicate a process and group replicas in one group 

• How many replicas do we create? 

• A system is k fault-tolerant if it can survive and 

function even if it has k faulty processes 

– For crash failures (a faulty process halts, but is working 

correctly until it halts) 

• k+1 replicas  

– For Byzantine failures (a faulty process may produce 

arbitrary responses at arbitrary times) 

• 2k+1 replicas 



Agreement 

• Need agreement in DS: 

– Leader, commit, synchronize 

• Distributed Agreement algorithm: all non-

faulty processes achieve consensus in a finite 

number of steps 

• Perfect processes, faulty channels: two-army 

• Faulty processes, perfect channels: Byzantine 

generals 



Two-Army Problem 



Byzantine Generals Problem 

 
 

 
 



Byzantine Generals -Example (1) 

The Byzantine generals problem for 3 loyal generals and1 traitor. 

a) The generals announce the time to launch the attack (by messages 
marked by their ids). 

b) The vectors that each general assembles based on (a) 

c) The vectors that each general receives in step 3, where every general 
passes his vector from (b) to every other general. 



Byzantine Generals –Example (2) 

The same as in previous slide, except now 

with 2 loyal generals and one traitor. 



Byzantine Generals 

• Given three processes, if one fails, consensus is 

impossible 

 

• Given N processes, if F processes fail, 

consensus is impossible if N  3F 



OceanStore 
Global-Scale Persistent Storage on 

Untrusted Infrastructure 



Update Model 
• Concurrent updates w/o wide-area locking 

– Conflict resolution 
• Updates Serialization 

• A master replica?  
– Incompatible with the untrusted infrastructure assumption 

• Role of primary tier of replicas  
– All updates submitted to primary tier of replicas which 

chooses a final total order by following Byzantine agreement 
protocol 

• A secondary tier of replicas  
– the result of the updates is multicast down the dissemination 

tree to all the secondary replicas 



The Path of an  

OceanStore Update 
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 Reliable Communication 



Reliable Group  

Communication 



Reliable Group Communication 

• When a group is static and processes do not fail 

 

• Reliable communication = deliver the message 

to all group members 

– Any order delivery 

– Ordered delivery 

 



Basic Reliable-Multicasting Schemes 

A simple solution to reliable multicasting when all 
receivers are known and assumed not to fail 

a) Message transmission 

b) Reporting feedback 



Atomic Multicast 

• All messages are delivered in the same order to “all” processes 

 

• Group view: the view on the set of processes contained in the 

group 

 

• Virtual synchronous multicast: a message m multicast to a 

group view G is delivered to all non-faulty processes in G 



Virtual Synchrony System Model 

The logical organization of a distributed system to distinguish 

between message receipt and message delivery 



Message Delivery  

Delivery of messages 

- new message => HBQ  

- decision making 

- delivery order 

- deliver or not to deliver? 

 

- the message is allowed to be 

  delivered: HBQ => DQ 

- when at the head of DQ: 

   message => application   

   (application: receive …) 

Application 

hold-back queue 

delivery queue 

delivery 

Message passing system 



Virtual Synchronous Multicast 

a) Message is not 

delivered 

A 

B 

C 

Gi = (A, B, C) Gi+1 = (B, C) 

b) Message is 

delivered 

A 

B 

C 

Gi = (A, B, C) Gi+1 = (B, C) 



Virtual Synchronous Multicast 

a) Message is not 

delivered 

A 

B 

C 

Gi = (A, B, C) Gi+1 = (B, C) 

b) ??? 

A 

B 

C 

Gi = (A, B, C) Gi+1 = (B, C) 



Virtual Synchronous Multicast 

a) ??? 

A 

B 

C 

Gi = (A, B, C) Gi+1 = (B, C) 



Reliability of Group Communication? 

• A sent message is received by all members 
    (acks from all => ok) 

• Problem: during a multicast operation 

– an old member disappears from the group 

– a new member joins the group 

• Solution 

– membership changes synchronize multicasting 
 during a MC operation no membership changes 

– Virtual synchrony: “all” processes see message and membership 
change in the same order 



Virtual Synchronous Multicast 

a) Message is not 

delivered 

A 

B 

C 

Gi = (A, B, C) Gi+1 = (B, C) 

b) Message is 

delivered 

A 

B 

C 

Gi = (A, B, C) Gi+1 = (B, C) 



Virtual Synchrony Implementation: 

[Birman et al., 1991] 

• Only stable messages are delivered 

• Stable message: a message received by all processes in 

the message’s group view 

• Assumptions (can be ensured by using TCP):  
– Point-to-point communication is reliable 

– Point-to-point communication ensures FIFO-ordering 

• How to determine if a message is stable? 

 

 



Virtual Synchrony Implementation: 

Example 

• Gi = {P1, P2, P3, P4, P5} 

• P5 fails 

• P1 detects that P5 has failed 

• P1 send a “view change” message 

to every process in  Gi+1 = {P1, P2, 

P3, P4} 

 

P1 

P2 P3 

P4 

P5 

change view 



Virtual Synchrony Implementation: 

Example 

• Every process  

– Send each unstable message 

m from Gi to members in Gi+1 

– Marks m as being stable 

– Send a flush message to mark 

that all unstable messages 

have been sent 

 

P1 

P2 P3 

P4 

P5 

unstable message 

flush  

message 



Virtual Synchrony Implementation: 

Example 

Every process  

– After receiving a flush message 

from all processes in Gi+1 installs 

Gi+1  

P1 

P2 P3 

P4 

P5 



Announcement 

• 2nd Midterm in the week after Spring Break 

– March 27, Wednesday 

 

• Chapters 6, 7, 8.1, & 8.2 



Distributed Commit 

• Goal: Either all members of a group decide to 

perform an operation, or none of them perform 

the operation 

 

• Atomic transaction: a transaction that happens 

completely or not at all 

 

 

 

 



Assumptions 

• Failures: 

– Crash failures that can be recovered 

– Communication failures detectable by timeouts 

 

• Notes:  

– Commit requires a set of processes to agree… 

– …similar to the Byzantine generals problem… 

– … but the solution much simpler because stronger 

assumptions 



Database 

ser-

ver 

Distributed Transactions 

client 

Database 

ser-

ver 

atomic 

isolated 

serializable 

Atomic 

Consistent 

Isolated 

Durable 

client 

ser-

ver 



A Distributed Banking Transaction 

. . 

BranchZ 

BranchX 

participant 

participant 

C 

D 

Client 

BranchY 

B 

A 

participant     join 

    join 

    join 

T 

      a.withdraw(4); 

      c.deposit(4); 

      b.withdraw(3); 

      d.deposit(3); 

openTransaction 

closeTransaction 

T =  openTransaction 

      a.withdraw(4); 

      c.deposit(4); 
      b.withdraw(3); 
      d.deposit(3); 

      closeTransaction 



One-phase Commit 

• One-phase commit protocol 

– One site is designated as a coordinator 

– The coordinator tells all the other processes whether 

or not to locally perform the operation in question 

– This scheme however is not fault tolerant 



Transaction Processing (1) 

client 

…. 
Open transaction 

T_write F1,P1 

T_write F2,P2 

T_write F3,P3 

Close transaction 

…. 

 

S1 

27 P1 

T_Id 

flag: init 

F1 

S2 
T_Id 

flag: init 

27 P2 

S3 

join 

coordinator 

F2 

F3  

participant 

2745 

T_Id 

flag: init 

P3 

participant 



Transaction Processing (2) 

client 

…. 
Open transaction 

T_read F1,P1 

T_write F2,P2 

T_write F3,P3 

Close transaction 

…. 

 

P1 27 

T_Id 

init 

F1 

T_Id 

init 

P2 27 

T_Id 

init 

P3 2745 

coordinator Close  

Yes 

Yes 

HaveCommitted 

HaveCommitted 

doCommit ! canCommit? 
wait 

ready 

ready 

committed 

committed 

committed done 



Two Phase Commit (2PC) 

send VOTE_REQ to all  

send vote to coordinator 

if (vote == no) 

    decide abort 

    halt 

if (all votes yes) 

   decide commit 

   send COMMIT to all 

else 

   decide abort 

   send ABORT to all who voted yes 

   halt 
if receive ABORT, decide abort 

else decide commit 

halt 

Coordinator Participants 



Two-Phase Commit (1) 

a) The finite state machine for the coordinator in 2PC. 

b) The finite state machine for a participant. 

✗ 



Two-Phase Commit (2) 

a) The finite state machine for the coordinator in 2PC. 

b) The finite state machine for a participant. 

✗ 



Two-Phase Commit (3) 

Actions taken by a participant P when residing in state 
READY and having contacted another participant Q. 

State of Q Action by P 

COMMIT Make transition to COMMIT 

ABORT Make transition to ABORT 

INIT Make transition to ABORT 

READY Contact another participant 



Two-Phase Commit (4) 

Outline of the steps taken by the coordinator in 2PC.  

actions by coordinator: 

write START _2PC to local log; 

multicast VOTE_REQUEST to all participants; 

while not all votes have been collected { 

    wait for any incoming vote; 

    if timeout { 

        write GLOBAL_ABORT to local log; 

        multicast  GLOBAL_ABORT to all participants; 

        exit; 

    } 

    record vote; 

} 

if all participants sent VOTE_COMMIT and coordinator votes COMMIT{ 

    write GLOBAL_COMMIT to local log; 

    multicast GLOBAL_COMMIT to all participants; 

} else { 

    write GLOBAL_ABORT  to local log; 

    multicast GLOBAL_ABORT to all participants; 

} 



Two-Phase Commit (5) 

Steps taken by 

participant 

process in 

2PC. 

actions by participant: 

write INIT to local log; 

wait for VOTE_REQUEST from coordinator; 

if timeout { 

    write VOTE_ABORT to local log; 

    exit; 

} 

if participant votes COMMIT { 

    write VOTE_COMMIT to local log; 

    send VOTE_COMMIT to coordinator; 

    wait for DECISION from coordinator; 

    if timeout { 

        multicast DECISION_REQUEST to other participants; 

        wait until DECISION is received; /* remain blocked */ 

        write DECISION to local log; 

    } 

    if DECISION == GLOBAL_COMMIT 

        write GLOBAL_COMMIT to local log; 

    else if DECISION == GLOBAL_ABORT 

        write GLOBAL_ABORT to local log; 

} else { 

    write VOTE_ABORT to local log; 

    send  VOTE ABORT to coordinator; 

} 



Two-Phase Commit (6) 

Steps taken by participant process for handling incoming 

decision requests. 

actions for handling decision requests: /* executed by separate thread */ 

while true { 

    wait until any incoming DECISION_REQUEST is received; /* remain blocked */ 

    read most recently recorded STATE from the local log; 

    if STATE == GLOBAL_COMMIT 

        send GLOBAL_COMMIT to requesting participant; 

    else if STATE == INIT or STATE == GLOBAL_ABORT 

        send GLOBAL_ABORT to requesting participant; 

    else 

        skip;  /* participant remains blocked */ 



Two-Phase Commit(7) 

• When all participants are in the ready states, 

no final decision can be reached 

 

• Two-phase commit is a blocking commit 

protocol 



Three-Phase Commit (1) 

• There is no state from which a transition can be 
made to either Commit or  Abort 

• There is no state where it is not possible to make a 
final decision and from which transition can be 
made to Commit 

•  non-blocking commit protocol 



Three-Phase Commit (2) 

• Coordinator sends Vote_Request (as before) 

• If all participants respond affirmatively, 
• Put Precommit state into log on stable storage 

• Send out Prepare_to_Commit message to all 

• After all participants acknowledge, 
• Put Commit state in log 

• Send out Global_Commit 



Three-Phase Commit (3) 

• Coordinator blocked in Wait state 
• Safe to abort transaction 

• Coordinator blocked in Precommit state 
• Safe to issue Global_Commit 

• Any crashed or partitioned participants will commit when 

recovered 



Three-Phase Commit (4) 

• Participant blocked in Precommit state 
• Contact others 

• Collectively decide to commit 

• Participant blocked in Ready state 
• Contact others 

• If any in Abort, then abort transaction 

• If any in Precommit, the move to Precommit state 

• If all in Ready state, then abort transaction 
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Recovery 

 We’ve talked a lot about fault tolerance, but 

not about what happens after a fault has 

occurred 

 A process that exhibits a failure has to be able 

to recover to a correct state 

 There are two basic types of recovery: 

 Backward Recovery 

 Forward Recovery 



Backward Recovery 

 The goal of backward recovery is to bring the 
system from an erroneous state back to a prior 
correct state 

 The state of the system must be recorded - 
checkpointed - from time to time, and then 
restored when things go wrong 

 Examples 

 Reliable communication through packet 
retransmission 



Forward Recovery 

 The goal of forward recovery is to bring a 

system from an erroneous state to a correct 

new state (not a previous state) 

 

 Examples: 

 Reliable communication via erasure correction, 

such as an (n, k) block erasure code 



More on Backward Recovery 

 Backward recovery is far more widely applied 

 The goal of backward recovery is to bring the 

system from an erroneous state back to a prior 

correct state 

 But, how to get a prior correct state? 

- Checkpointing 

- Checkpointing is costly, so it’s often combined 

with message logging 



Stable Storage 

 In order to store checkpoints and logs, 

information needs to be stored safely - not just 

able to survive crashes, but also able to survive 

hardware faults 

 

 RAID is the typical example of stable storage 



Checkpointing 

 

 Related to checkpointing, let us first discuss 

the global state and the distributed snapshot 

algorithm 



Determining Global States 

 The global state of a distributed computation is 

 the set of local states of all individual processes 

involved in the computation 

+ 

 the states of the communication channels 

 

 How? 

 



Obvious First Solution… 

• Synchronize clocks of all processes and ask all 
processes to record their states at known time t 

 

• Problems? 
 Time synchronization possible only approximately 

distributed banking applications: no approximations! 

 

 Does not record the state of messages in the channels 

 

 



Global State 

 We cannot determine the exact global state 

of the system, but we can record a 

snapshot of it 

 

 Distributed Snapshot: a state the system 

might have been in [Chandy and Lamport] 

 

 



A naïve snapshot algorithm 

 Processes record their states at any arbitrary points 

 A designated process collects these states 

 

 + So simple!! 

 -  Correct?? 



Example 
Producer Consumer problem 

 p records its state 

  m 

p q 



Example 

   

p q 

m 



Example 

 q records its state 

   

p q 

m 



Example 

The recorded state 

  m 

p q 

m 

The sender has no record of the sending 

The receiver has the record of the receipt 



 

What’s Wrong? 

p 

q 

m 

 Result: 

 Global state has record of the receive event but no 

send event violating the happens-before concept!! 



Cut 

A consistent cut (meaningful global state) ? 



Cut 

A consistent cut (meaningful global state) ? 



Cuts 

a) A consistent cut (meaningful global state) 

b) An inconsistent cut 



The “Snapshot” Algorithm  

 Records a set of process and channel 
states such that the combination is a 
consistent GS. 

 Assumptions: 
  All messages arrive intact, exactly once 

  Communication channels are unidirectional and FIFO-
ordered 

  There is a comm. path between any two processes 

  Any process may initiate the snapshot (sends Marker) 

  Snapshot does not interfere with normal execution 

  Each process records its state and the state of its 
incoming channels 

 



The “Snapshot” Algorithm (2)  

1. Marker sending rule for initiator process P0 

   After P0 has recorded its state 

•  for each outgoing channel C, sends a marker on C  

2. Marker receiving rule for a process Pk, on receipt 
of a marker over channel C 

   if Pk has not yet recorded its state 

- records Pk’s state 

- records the state of C as “empty” 

- turns on recording of messages over other incoming 
channels 

• for each outgoing channel C, sends a marker on C  

- else 

- records the state of C as all the messages received over C 
since Pk saved its state 



Snapshot  Example 

  

  
P1 

P2 

P3 

e1
0 

e2
0 

e2
4 

e3
0 

e1
3 

a 

b 

M 

e1
1,2 

M 

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3; 
turns on recording for channels C21 and C31 

e2
1,2,3 

M 

M 

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {} 
sends Marker to P1 & P3; turns on recording for channel C32 

e1
4 

3- P1 receives Marker over C21, sets state(C21) = {a} 

e3
1,2,3 

M 

M 

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {} 
sends Marker to P1 & P2; turns on recording for channel C23 

e2
5 

5- P2 receives Marker over C32, sets state(C32) = {b} 

e3
4 

6- P3 receives Marker over C23, sets state(C23) = {} 

7- P1 receives Marker over C31, sets state(C31) = {} 

e1
5 



Snapshot  Example 

  

  

P1 

P2 

P3 

e1
0 

e2
0 

e2
4 

e3
0 

e1
3 

a 

b 



Distributed Snapshot Algorithm 

 

 When a process finishes local snapshot, it 

collects its local state (S and C) and sends 

it to the initiator of the distributed snapshot 

 The initiator can then analyze the state 

 One algorithm for distributed global 

snapshots, but it’s not particularly efficient 

for large systems 



Checkpointing 

 We’ve discussed distributed snapshots 

 The most recent distributed snapshot in a 

system is also called the recovery line 



Independent Checkpointing 

 It is often difficult to find a recovery line in a 

system where every process just records its 

local state every so often - a domino effect or 

cascading rollback can result: 



Coordinated Checkpointing 

 To solve this problem, systems can implement 

coordinated checkpointing 

 We’ve discussed one algorithm for distributed 

global snapshots, but it’s not particularly 

efficient for large systems 

 Another way to do it is to use a two-phase 

blocking protocol (with some coordinator) to 

get every process to checkpoint its local state 

“simultaneously” 



Coordinated Checkpointing 

 
 Make sure that processes are synchronized when 

doing the checkpoint 

 Two-phase blocking protocol 

1. Coordinator multicasts CHECKPOINT_REQUEST 

2. Processes take local checkpoint 

 Delay further sends 

 Acknowledge to coordinator 

 Send state 

3. Coordinator multicasts CHECKPOINT_DONE 

 

 



Message Logging 

 Checkpointing is expensive - message logging 
allows the occurrences between checkpoints to 
be replayed, so that checkpoints don’t need to 
happen as frequently 



Message Logging 

 We need to choose when to log messages 

 

 Message-logging schemes can be 

characterized as pessimistic or optimistic by 

how they deal with orphan processes 

 An orphan process is one that survives the crash of 

another process but has an inconsistent state after 

the other process recovers 



Message Logging 

 An example of an incorrect replay of messages 



Message Logging 

 We assume that each message m has a header 
containing all the information necessary to 
retransmit m (sender, receiver, sequence no., etc.) 

 A message is called stable if it can no longer be lost 
- a stable message can be used for recovery by 
replaying its transmission 



Message Logging 

 Each message m leads to a set of dependent 
processes DEP(m), to which either m or a message 
causally dependent on m has been delivered 



Message Logging 

 The set COPY(m) consists of the processes that have 
a copy of m, but not in their local stable storage - 
any process in COPY(m) could deliver a copy of m 
on request 



Message Logging 

 Process Q is an orphan process if there is a nonstable 
message m, such that Q is contained in DEP(m), and 
every process in COPY(m) has crashed 



Message Logging 

 To avoid orphan processes, we need to ensure that if 
all processes in COPY(m) crash, no processes 
remain in DEP(m) 



Pessimistic Logging 

 For each nonstable message m, ensure that at 

most one process P is dependent on m 

 The worst that can happen is that P crashes 

without m ever having been logged 

 No other process can have become dependent 

on m, because m was nonstable, so this leaves 

no orphans 



Optimistic Logging 

 The work is done after a crash occurs, not before 

 If, for some m, each process in COPY(m) has 

crashed, then any orphan process in DEP(m) 

gets rolled back to a state in which it no longer 

belongs in DEP(m) 



Optimistic Logging 

 The work is done after a crash occurs, not before 

 If, for some m, each process in COPY(m) has 

crashed, then any orphan process in DEP(m) 

gets rolled back to a state in which it no longer 

belongs in DEP(m) 

 Dependencies need to be explicitly tracked, 

which makes this difficult to implement - as a 

result, pessimistic approaches are preferred in 

real-world implementations 


