
Fault Tolerance

Part I Introduction

Part II Process Resilience

Part III Reliable Communication

Part IV Distributed Commit

Part V Recovery

 Most of the lecture notes are based on slides by Prof. Jalal Y.

Kawash at Univ. of Calgary and Dr. Daniel M. Zimmerman at

CALTECH

 Some of the lecture notes are based on slides by Scott

Shenker and Ion Stoica at Univ.of California, Berkeley, Timo

Alanko at Univ. of Helsinki, Finland, Hugh C. Lauer at

Worcester Polytechnic Institute, Xiuwen Liu at Florida State

University

 I have modified them and added new slides

Giving credit where credit is due:

CSCE455/855 Distributed Operating Systems

Fault Tolerance

Fault Tolerance

• A DS should be fault-tolerant

– Should be able to continue functioning in the

presence of faults

• Fault tolerance is related to dependability

Dependability

Dependability Includes

• Availability

• Reliability

• Safety

• Maintainability

Availability & Reliability (1)

• Availability: A measurement of whether a system

is ready to be used immediately

– System is up and running at any given moment

• Reliability: A measurement of whether a system

can run continuously without failure

– System continues to function for a long period of time

Availability & Reliability (2)

• A system goes down 1ms/hr has an

availability of more than 99.99%, but is

unreliable

• A system that never crashes but is shut

down for a week once every year is 100%

reliable but only 98% available

Safety & Maintainability

• Safety: A measurement of how safe failures are

– System fails, nothing serious happens

– For instance, high degree of safety is required for

systems controlling nuclear power plants

• Maintainability: A measurement of how easy

it is to repair a system

– A highly maintainable system may also show a high

degree of availability

– Failures can be detected and repaired automatically?

Self-healing systems?

Faults

• A system fails when it cannot meet its promises

(specifications)

• An error is part of a system state that may lead to a

failure

• A fault is the cause of the error

• Fault-Tolerance: the system can provide services

even in the presence of faults

• Faults can be:

– Transient (appear once and disappear)

– Intermittent (appear-disappear-reappear behavior)

• A loose contact on a connector intermittent fault

– Permanent (appear and persist until repaired)

Failure Models

Type of failure Description

Crash failure A server halts, but is working correctly until it halts

Omission failure

 Receive omission

 Send omission

A server fails to respond to incoming requests

A server fails to receive incoming messages

A server fails to send messages

Timing failure A server's response lies outside the specified time interval

Response failure

 Value failure

 State transition failure

The server's response is incorrect

The value of the response is wrong

The server deviates from the correct flow of control

Arbitrary failure

(Byzantine failure)

A server may produce arbitrary responses at arbitrary times

Failure Masking

• Redundancy is key technique for hiding failures

• Redundancy types:

1. Information: add extra (control) information

• Error-correction codes in messages

2. Time: perform an action persistently until it

succeeds:

• Transactions

3. Physical: add extra components (S/W & H/W)

• Process replication, electronic circuits

?

Example – Redundancy in Circuits (1)

Example – Redundancy in Circuits (2)

Triple modular redundancy.

Fault Tolerance

Part II

Process Resilience

Process Resilience

• Mask process failures by replication

• Organize processes into groups, a message sent

to a group is delivered to all members

• If a member fails, another should fill in

Flat Groups versus Hierarchical Groups

a) Communication in a flat group.

b) Communication in a simple hierarchical group

Process Replication

• Replicate a process and group replicas in one group

• How many replicas do we create?

• A system is k fault-tolerant if it can survive and

function even if it has k faulty processes

– For crash failures (a faulty process halts, but is working

correctly until it halts)

• k+1 replicas

– For Byzantine failures (a faulty process may produce

arbitrary responses at arbitrary times)

• 2k+1 replicas

Agreement

• Need agreement in DS:

– Leader, commit, synchronize

• Distributed Agreement algorithm: all non-

faulty processes achieve consensus in a finite

number of steps

• Perfect processes, faulty channels: two-army

• Faulty processes, perfect channels: Byzantine

generals

Two-Army Problem

Byzantine Generals Problem

Byzantine Generals -Example (1)

The Byzantine generals problem for 3 loyal generals and1 traitor.

a) The generals announce the time to launch the attack (by messages
marked by their ids).

b) The vectors that each general assembles based on (a)

c) The vectors that each general receives in step 3, where every general
passes his vector from (b) to every other general.

Byzantine Generals –Example (2)

The same as in previous slide, except now

with 2 loyal generals and one traitor.

Byzantine Generals

• Given three processes, if one fails, consensus is

impossible

• Given N processes, if F processes fail,

consensus is impossible if N 3F

OceanStore
Global-Scale Persistent Storage on

Untrusted Infrastructure

Update Model
• Concurrent updates w/o wide-area locking

– Conflict resolution
• Updates Serialization

• A master replica?
– Incompatible with the untrusted infrastructure assumption

• Role of primary tier of replicas
– All updates submitted to primary tier of replicas which

chooses a final total order by following Byzantine agreement
protocol

• A secondary tier of replicas
– the result of the updates is multicast down the dissemination

tree to all the secondary replicas

The Path of an

OceanStore Update

Fault Tolerance

Chapter 8

Part III

 Reliable Communication

Reliable Group

Communication

Reliable Group Communication

• When a group is static and processes do not fail

• Reliable communication = deliver the message

to all group members

– Any order delivery

– Ordered delivery

Basic Reliable-Multicasting Schemes

A simple solution to reliable multicasting when all
receivers are known and assumed not to fail

a) Message transmission

b) Reporting feedback

Atomic Multicast

• All messages are delivered in the same order to “all” processes

• Group view: the view on the set of processes contained in the

group

• Virtual synchronous multicast: a message m multicast to a

group view G is delivered to all non-faulty processes in G

Virtual Synchrony System Model

The logical organization of a distributed system to distinguish

between message receipt and message delivery

Message Delivery

Delivery of messages

- new message => HBQ

- decision making

- delivery order

- deliver or not to deliver?

- the message is allowed to be

 delivered: HBQ => DQ

- when at the head of DQ:

 message => application

 (application: receive …)

Application

hold-back queue

delivery queue

delivery

Message passing system

Virtual Synchronous Multicast

a) Message is not

delivered

A

B

C

Gi = (A, B, C) Gi+1 = (B, C)

b) Message is

delivered

A

B

C

Gi = (A, B, C) Gi+1 = (B, C)

Virtual Synchronous Multicast

a) Message is not

delivered

A

B

C

Gi = (A, B, C) Gi+1 = (B, C)

b) ???

A

B

C

Gi = (A, B, C) Gi+1 = (B, C)

Virtual Synchronous Multicast

a) ???

A

B

C

Gi = (A, B, C) Gi+1 = (B, C)

Reliability of Group Communication?

• A sent message is received by all members
 (acks from all => ok)

• Problem: during a multicast operation

– an old member disappears from the group

– a new member joins the group

• Solution

– membership changes synchronize multicasting
 during a MC operation no membership changes

– Virtual synchrony: “all” processes see message and membership
change in the same order

Virtual Synchronous Multicast

a) Message is not

delivered

A

B

C

Gi = (A, B, C) Gi+1 = (B, C)

b) Message is

delivered

A

B

C

Gi = (A, B, C) Gi+1 = (B, C)

Virtual Synchrony Implementation:

[Birman et al., 1991]

• Only stable messages are delivered

• Stable message: a message received by all processes in

the message’s group view

• Assumptions (can be ensured by using TCP):
– Point-to-point communication is reliable

– Point-to-point communication ensures FIFO-ordering

• How to determine if a message is stable?

Virtual Synchrony Implementation:

Example

• Gi = {P1, P2, P3, P4, P5}

• P5 fails

• P1 detects that P5 has failed

• P1 send a “view change” message

to every process in Gi+1 = {P1, P2,

P3, P4}

P1

P2 P3

P4

P5

change view

Virtual Synchrony Implementation:

Example

• Every process

– Send each unstable message

m from Gi to members in Gi+1

– Marks m as being stable

– Send a flush message to mark

that all unstable messages

have been sent

P1

P2 P3

P4

P5

unstable message

flush

message

Virtual Synchrony Implementation:

Example

Every process

– After receiving a flush message

from all processes in Gi+1 installs

Gi+1

P1

P2 P3

P4

P5

Announcement

• 2nd Midterm in the week after Spring Break

– March 27, Wednesday

• Chapters 6, 7, 8.1, & 8.2

Distributed Commit

• Goal: Either all members of a group decide to

perform an operation, or none of them perform

the operation

• Atomic transaction: a transaction that happens

completely or not at all

Assumptions

• Failures:

– Crash failures that can be recovered

– Communication failures detectable by timeouts

• Notes:

– Commit requires a set of processes to agree…

– …similar to the Byzantine generals problem…

– … but the solution much simpler because stronger

assumptions

Database

ser-

ver

Distributed Transactions

client

Database

ser-

ver

atomic

isolated

serializable

Atomic

Consistent

Isolated

Durable

client

ser-

ver

A Distributed Banking Transaction

. .

BranchZ

BranchX

participant

participant

C

D

Client

BranchY

B

A

participant join

 join

 join

T

 a.withdraw(4);

 c.deposit(4);

 b.withdraw(3);

 d.deposit(3);

openTransaction

closeTransaction

T = openTransaction

 a.withdraw(4);

 c.deposit(4);
 b.withdraw(3);
 d.deposit(3);

 closeTransaction

One-phase Commit

• One-phase commit protocol

– One site is designated as a coordinator

– The coordinator tells all the other processes whether

or not to locally perform the operation in question

– This scheme however is not fault tolerant

Transaction Processing (1)

client

….
Open transaction

T_write F1,P1

T_write F2,P2

T_write F3,P3

Close transaction

….

S1

27 P1

T_Id

flag: init

F1

S2
T_Id

flag: init

27 P2

S3

join

coordinator

F2

F3

participant

2745

T_Id

flag: init

P3

participant

Transaction Processing (2)

client

….
Open transaction

T_read F1,P1

T_write F2,P2

T_write F3,P3

Close transaction

….

P1 27

T_Id

init

F1

T_Id

init

P2 27

T_Id

init

P3 2745

coordinator Close

Yes

Yes

HaveCommitted

HaveCommitted

doCommit ! canCommit?
wait

ready

ready

committed

committed

committed done

Two Phase Commit (2PC)

send VOTE_REQ to all

send vote to coordinator

if (vote == no)

 decide abort

 halt

if (all votes yes)

 decide commit

 send COMMIT to all

else

 decide abort

 send ABORT to all who voted yes

 halt
if receive ABORT, decide abort

else decide commit

halt

Coordinator Participants

Two-Phase Commit (1)

a) The finite state machine for the coordinator in 2PC.

b) The finite state machine for a participant.

✗

Two-Phase Commit (2)

a) The finite state machine for the coordinator in 2PC.

b) The finite state machine for a participant.

✗

Two-Phase Commit (3)

Actions taken by a participant P when residing in state
READY and having contacted another participant Q.

State of Q Action by P

COMMIT Make transition to COMMIT

ABORT Make transition to ABORT

INIT Make transition to ABORT

READY Contact another participant

Two-Phase Commit (4)

Outline of the steps taken by the coordinator in 2PC.

actions by coordinator:

write START _2PC to local log;

multicast VOTE_REQUEST to all participants;

while not all votes have been collected {

 wait for any incoming vote;

 if timeout {

 write GLOBAL_ABORT to local log;

 multicast GLOBAL_ABORT to all participants;

 exit;

 }

 record vote;

}

if all participants sent VOTE_COMMIT and coordinator votes COMMIT{

 write GLOBAL_COMMIT to local log;

 multicast GLOBAL_COMMIT to all participants;

} else {

 write GLOBAL_ABORT to local log;

 multicast GLOBAL_ABORT to all participants;

}

Two-Phase Commit (5)

Steps taken by

participant

process in

2PC.

actions by participant:

write INIT to local log;

wait for VOTE_REQUEST from coordinator;

if timeout {

 write VOTE_ABORT to local log;

 exit;

}

if participant votes COMMIT {

 write VOTE_COMMIT to local log;

 send VOTE_COMMIT to coordinator;

 wait for DECISION from coordinator;

 if timeout {

 multicast DECISION_REQUEST to other participants;

 wait until DECISION is received; /* remain blocked */

 write DECISION to local log;

 }

 if DECISION == GLOBAL_COMMIT

 write GLOBAL_COMMIT to local log;

 else if DECISION == GLOBAL_ABORT

 write GLOBAL_ABORT to local log;

} else {

 write VOTE_ABORT to local log;

 send VOTE ABORT to coordinator;

}

Two-Phase Commit (6)

Steps taken by participant process for handling incoming

decision requests.

actions for handling decision requests: /* executed by separate thread */

while true {

 wait until any incoming DECISION_REQUEST is received; /* remain blocked */

 read most recently recorded STATE from the local log;

 if STATE == GLOBAL_COMMIT

 send GLOBAL_COMMIT to requesting participant;

 else if STATE == INIT or STATE == GLOBAL_ABORT

 send GLOBAL_ABORT to requesting participant;

 else

 skip; /* participant remains blocked */

Two-Phase Commit(7)

• When all participants are in the ready states,

no final decision can be reached

• Two-phase commit is a blocking commit

protocol

Three-Phase Commit (1)

• There is no state from which a transition can be
made to either Commit or Abort

• There is no state where it is not possible to make a
final decision and from which transition can be
made to Commit

• non-blocking commit protocol

Three-Phase Commit (2)

• Coordinator sends Vote_Request (as before)

• If all participants respond affirmatively,
• Put Precommit state into log on stable storage

• Send out Prepare_to_Commit message to all

• After all participants acknowledge,
• Put Commit state in log

• Send out Global_Commit

Three-Phase Commit (3)

• Coordinator blocked in Wait state
• Safe to abort transaction

• Coordinator blocked in Precommit state
• Safe to issue Global_Commit

• Any crashed or partitioned participants will commit when

recovered

Three-Phase Commit (4)

• Participant blocked in Precommit state
• Contact others

• Collectively decide to commit

• Participant blocked in Ready state
• Contact others

• If any in Abort, then abort transaction

• If any in Precommit, the move to Precommit state

• If all in Ready state, then abort transaction

Fault Tolerance

Chapter 8

Part V

Recovery

Recovery

 We’ve talked a lot about fault tolerance, but

not about what happens after a fault has

occurred

 A process that exhibits a failure has to be able

to recover to a correct state

 There are two basic types of recovery:

 Backward Recovery

 Forward Recovery

Backward Recovery

 The goal of backward recovery is to bring the
system from an erroneous state back to a prior
correct state

 The state of the system must be recorded -
checkpointed - from time to time, and then
restored when things go wrong

 Examples

 Reliable communication through packet
retransmission

Forward Recovery

 The goal of forward recovery is to bring a

system from an erroneous state to a correct

new state (not a previous state)

 Examples:

 Reliable communication via erasure correction,

such as an (n, k) block erasure code

More on Backward Recovery

 Backward recovery is far more widely applied

 The goal of backward recovery is to bring the

system from an erroneous state back to a prior

correct state

 But, how to get a prior correct state?

- Checkpointing

- Checkpointing is costly, so it’s often combined

with message logging

Stable Storage

 In order to store checkpoints and logs,

information needs to be stored safely - not just

able to survive crashes, but also able to survive

hardware faults

 RAID is the typical example of stable storage

Checkpointing

 Related to checkpointing, let us first discuss

the global state and the distributed snapshot

algorithm

Determining Global States

 The global state of a distributed computation is

 the set of local states of all individual processes

involved in the computation

+

 the states of the communication channels

 How?

Obvious First Solution…

• Synchronize clocks of all processes and ask all
processes to record their states at known time t

• Problems?
 Time synchronization possible only approximately

distributed banking applications: no approximations!

 Does not record the state of messages in the channels

Global State

 We cannot determine the exact global state

of the system, but we can record a

snapshot of it

 Distributed Snapshot: a state the system

might have been in [Chandy and Lamport]

A naïve snapshot algorithm

 Processes record their states at any arbitrary points

 A designated process collects these states

 + So simple!!

 - Correct??

Example
Producer Consumer problem

 p records its state

 m

p q

Example

p q

m

Example

 q records its state

p q

m

Example

The recorded state

 m

p q

m

The sender has no record of the sending

The receiver has the record of the receipt

What’s Wrong?

p

q

m

 Result:

 Global state has record of the receive event but no

send event violating the happens-before concept!!

Cut

A consistent cut (meaningful global state) ?

Cut

A consistent cut (meaningful global state) ?

Cuts

a) A consistent cut (meaningful global state)

b) An inconsistent cut

The “Snapshot” Algorithm

 Records a set of process and channel
states such that the combination is a
consistent GS.

 Assumptions:
 All messages arrive intact, exactly once

 Communication channels are unidirectional and FIFO-
ordered

 There is a comm. path between any two processes

 Any process may initiate the snapshot (sends Marker)

 Snapshot does not interfere with normal execution

 Each process records its state and the state of its
incoming channels

The “Snapshot” Algorithm (2)

1. Marker sending rule for initiator process P0

 After P0 has recorded its state

• for each outgoing channel C, sends a marker on C

2. Marker receiving rule for a process Pk, on receipt
of a marker over channel C

 if Pk has not yet recorded its state

- records Pk’s state

- records the state of C as “empty”

- turns on recording of messages over other incoming
channels

• for each outgoing channel C, sends a marker on C

- else

- records the state of C as all the messages received over C
since Pk saved its state

Snapshot Example

P1

P2

P3

e1
0

e2
0

e2
4

e3
0

e1
3

a

b

M

e1
1,2

M

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3;
turns on recording for channels C21 and C31

e2
1,2,3

M

M

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {}
sends Marker to P1 & P3; turns on recording for channel C32

e1
4

3- P1 receives Marker over C21, sets state(C21) = {a}

e3
1,2,3

M

M

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {}
sends Marker to P1 & P2; turns on recording for channel C23

e2
5

5- P2 receives Marker over C32, sets state(C32) = {b}

e3
4

6- P3 receives Marker over C23, sets state(C23) = {}

7- P1 receives Marker over C31, sets state(C31) = {}

e1
5

Snapshot Example

P1

P2

P3

e1
0

e2
0

e2
4

e3
0

e1
3

a

b

Distributed Snapshot Algorithm

 When a process finishes local snapshot, it

collects its local state (S and C) and sends

it to the initiator of the distributed snapshot

 The initiator can then analyze the state

 One algorithm for distributed global

snapshots, but it’s not particularly efficient

for large systems

Checkpointing

 We’ve discussed distributed snapshots

 The most recent distributed snapshot in a

system is also called the recovery line

Independent Checkpointing

 It is often difficult to find a recovery line in a

system where every process just records its

local state every so often - a domino effect or

cascading rollback can result:

Coordinated Checkpointing

 To solve this problem, systems can implement

coordinated checkpointing

 We’ve discussed one algorithm for distributed

global snapshots, but it’s not particularly

efficient for large systems

 Another way to do it is to use a two-phase

blocking protocol (with some coordinator) to

get every process to checkpoint its local state

“simultaneously”

Coordinated Checkpointing

 Make sure that processes are synchronized when

doing the checkpoint

 Two-phase blocking protocol

1. Coordinator multicasts CHECKPOINT_REQUEST

2. Processes take local checkpoint

 Delay further sends

 Acknowledge to coordinator

 Send state

3. Coordinator multicasts CHECKPOINT_DONE

Message Logging

 Checkpointing is expensive - message logging
allows the occurrences between checkpoints to
be replayed, so that checkpoints don’t need to
happen as frequently

Message Logging

 We need to choose when to log messages

 Message-logging schemes can be

characterized as pessimistic or optimistic by

how they deal with orphan processes

 An orphan process is one that survives the crash of

another process but has an inconsistent state after

the other process recovers

Message Logging

 An example of an incorrect replay of messages

Message Logging

 We assume that each message m has a header
containing all the information necessary to
retransmit m (sender, receiver, sequence no., etc.)

 A message is called stable if it can no longer be lost
- a stable message can be used for recovery by
replaying its transmission

Message Logging

 Each message m leads to a set of dependent
processes DEP(m), to which either m or a message
causally dependent on m has been delivered

Message Logging

 The set COPY(m) consists of the processes that have
a copy of m, but not in their local stable storage -
any process in COPY(m) could deliver a copy of m
on request

Message Logging

 Process Q is an orphan process if there is a nonstable
message m, such that Q is contained in DEP(m), and
every process in COPY(m) has crashed

Message Logging

 To avoid orphan processes, we need to ensure that if
all processes in COPY(m) crash, no processes
remain in DEP(m)

Pessimistic Logging

 For each nonstable message m, ensure that at

most one process P is dependent on m

 The worst that can happen is that P crashes

without m ever having been logged

 No other process can have become dependent

on m, because m was nonstable, so this leaves

no orphans

Optimistic Logging

 The work is done after a crash occurs, not before

 If, for some m, each process in COPY(m) has

crashed, then any orphan process in DEP(m)

gets rolled back to a state in which it no longer

belongs in DEP(m)

Optimistic Logging

 The work is done after a crash occurs, not before

 If, for some m, each process in COPY(m) has

crashed, then any orphan process in DEP(m)

gets rolled back to a state in which it no longer

belongs in DEP(m)

 Dependencies need to be explicitly tracked,

which makes this difficult to implement - as a

result, pessimistic approaches are preferred in

real-world implementations

